Reactions of Ortho-esters of Titanium. Part IV.* 598. Alcoholysis Reactions of Alkyl Orthotitanates.

By I. D. VARMA and R. C. MEHROTRA.

Reactions of $Ti(OMe)_4$, $Ti(OEt)_4$, $Ti(OPr^i)_4$, and $Ti(OBu^t)_4$ with alcohols (MeOH, EtOH, PriOH, and ButOH) have revealed the following order of reactivity in replacement reactions: $OMe \gg OEt > OPr^i > OBu^t$. It has therefore been possible to synthesise the following pure mixed orthotitanates: $MeO \cdot Ti(OR)_3$, $(MeO)_2 Ti(OR)_2$ (OR = OEt, OPrⁱ, OBu^t), and $(MeO)_{3}Ti OR$ (OR = OEt, OPrⁱ). The mixed ethyl methyl orthotitanates crystallise from benzene and distil unchanged under reduced pressure. Isopropyl methyl and methyl t-butyl titanates are liquids and undergo disproportionation, mainly into monomethyl tri-isopropyl or tri-t-butyl and tetramethyl titanates. Fresh light has been thrown on the nature of tetramethyl titanate.

A FEW mixed ortho-esters of titanium ¹ and of zirconium ² have been reported. Higher ortho-esters of titanium have been prepared by alcohol-interchange reactions,^{3,4} which have now been shown to be reversible. Data presented in Tables 1 and 2 exhibit

TABLE 1. Reaction: $Ti(OR)_4 + MeOH$ (molar ratio 1:3).

Ti(OBu^t)₄ Ester Ti(OPrⁱ)4 Ti(OEt)₄ MeO: Ti (in product) $2 \cdot 3$ $2 \cdot 1$ 2.0

TABLE 2. Reaction: $Ti(OR)_4 + R'OH$ (molar ratio 1:4).

	C)R' : Ti (i	n produc		OR' : Ti (in product)					
Ester	MeOH	EtOH	Pr ⁱ OH	Bu ^t OH	Ester	MeOH	EtOH	Pr ⁱ OH	ButOH	
Ti(OMe) ₄		1.5	1.5		Ti(OPr ⁱ) ₄				$2 \cdot 3$	
Ti(OEt) ₄			the Constant	1.6	$Ti(OBu^{t})_{4}$	$2 \cdot 7$	$2 \cdot 4$	1.8		

the following comparative reactivity of the alkoxy-groups in alcoholysis reactions: $MeO \gg EtO > Pr^iO > Bu^tO.$

* Part III, J. prakt. Chem., in the press.

¹ Ghosh, Ghosh Mazumdar, Bose, and Sen Gupta, J. Indian Chem. Soc., 1954, 34, 683; Nesmeyanov ¹ Oliosi, Glosi Mazimazi, Boss, and Sen Gupta, J. Indian Chem. Soc., 1934, 97, 083, 10816941
 ² Mehrotra, J. Indian Chem. Soc., 1954, 31, 905.
 ³ Bradley, Mehrotra, and Wardlaw, J., 1952, 2027, 4204, 5020.
 ⁴ Bradley, Mehrotra, Swanwick, and Wardlaw, J., 1953, 2025.

The foregoing and also reactions for the molar ratios 1:1 and 1:2 are represented in Tables 4—8. By carrying out the reactions in benzene the compounds of types (I) and (II) have been isolated (R == Et, Prⁱ, or Bu^t).

 $Ti(OR)_4 + MeOH \longrightarrow MeO \cdot Ti(OR)_3 (I) + ROH$ $Ti(OR)_4 + 2MeOH \longrightarrow (MeO)_2Ti(OR)_3 (II) + 2ROH$

The identity of some of these orthotitanates (particularly the ethyl methyl orthotitanates) has been established by distilling them unchanged (Table 3). In other cases the mixed orthotitanates have been found to disproportionate when distilled under reduced pressure. The isopropyl (or t-butyl) methyl titanates, in general, yield mainly a monomethyl derivative and tetramethyl titanate.

TABLE	3.

Alkyl ortho- titanate Ti(OEt) ₄ Ti(OEt) ₃ (OMe) Ti(OEt) ₂ (OMe) ₂	B. p./mm. 121°/0·8 143°/1·5 130°/0·2	$M~({ m obs.})\ 556\ 553\ 604$	Mol. com- plexity 2·4 2·6 3·0	Alkyl ortho- titanate Ti(OEt)(OMe) ₃ Ti(OMe) ₄	190°/1·5 (Sublimn.	$M ext{ (obs.)} ext{657} ext{} ext{}$	Mol. com- plexity 3·5 4·0 (extrap.)
					temp.)		

Tetramethyl titanate is unique among the orthotitanates, in being an infusible white solid, insoluble in most organic solvents. The mixed methyl titanates are all soluble in benzene. Of these the ethyl methyl titanates crystallise as white solids from benzene, and their individual identity was further established by the unchanged analyses of the products after repeated crystallisation. Attempts have been made to explain the insoluble nature of tetramethyl titanate by its highly polymerised nature or by strong inductive effects of the methyl group. The molecular weights of ethyl methyl orthotitanates (Table 3) have been measured ebullioscopically by a method already described,³ and appear to indicate that the main controling factor in the unique properties of tetramethyl titanate is not its highly polymerised character but the inductive effects of methyl group.

Experimental

Apparatus.-Moisture was excluded in all the experiments.⁵

Materials.—Alcohols⁶ and benzene⁵ were purified as described elsewhere. $Ti(OEt)_4$ and $Ti(OPr^i)_4$ (Peter Spence products) were purified by distillation.⁵ $Ti(OBu^t)_4$ ⁷ and $Ti(OMe)_4$ ⁸ were prepared and purified by distillation and sublimation respectively.

Analytical Methods.—Titanium was estimated as TiO_2 . Ethoxy- and isopropoxy-contents of esters were determined by oxidation with dichromate.⁹

Reaction between Methanol and Tetraethyl Titanate.—Methanol (0.74 g., 23 mmoles) was added with constant stirring to Ti(OEt)₄ (5.15 g., 23 mmoles); heat was evolved and a white precipitate settled. Benzene (15.0 g.) was distilled into the reaction mixture. After refluxing gently at 90° for 3 hr., the clear solution was allowed to crystallise overnight at room temperature. After the supernatant liquor had been decanted, the white crystals were dried at $30^{\circ}/1$ mm. (1.6 g.) (Found: Ti, $22\cdot3^{\circ}_{0}$). The supernatant liquor was evaporated to dryness at $30^{\circ}/1$ mm. A white solid (2.9 g.) was obtained (Found: Ti, $22\cdot55^{\circ}_{0}$). The two solids were mixed and recrystallised from benzene (Found: Ti, $22\cdot3$. Calc. for $C_7H_{18}O_4Ti$: Ti, $22\cdot4^{\circ}_{0}$). The above compound (2.2 g.) distilled at $143^{\circ}/1.5$ mm. and a wax-like solid (1.8 g.) was obtained (Found: Ti, $22\cdot25^{\circ}_{0}$). It was recrystallised from benzene (Found: Ti, $22\cdot3^{\circ}_{0}$). Other reactions are condensed in Tables 4—9.

⁵ Varma and Mehrotra, J. prakt. Chem., 1959, 8, 235.

⁶ Vogel, "A Text-book of Practical Organic Chemistry," Longmans, Green and Co., London, 1956, pp. 169, 170.

⁷ Speer, J. Org. Chem., 1949, 14, 655.

⁸ Bischoff and Adkins, J. Amer. Chem. Soc., 1924, 46, 256.

⁹ Mehrotra, J. Indian Chem. Soc., 1953, 30, 585; 1954, 31, 904; J. Amer. Chem. Soc., 1954, 76, 2266.

TABLE 4. Reaction of methanol with tetraethyl or diethyl dimethyl titanate.

			Proc	luct	Action	uct		
Reacta	.nts (g.)	Yield	Ti	Distillat	e	Found *		
Ti(OEt)4	MeOH	C ₆ H ₆ (g.)	(g.)	(%) *	B. p./mm.	g.	- Ti (%)	Solid (g.)
5.15	0·74 (1 mol.)	15.0	4·5 ª	$22 \cdot 3$	$143^{\circ}/1.5$	1·8 b	$22 \cdot 25$	$2 \cdot 2$
5.65	1.59 (2 mol.)	5.0	5·1 ª	$23 \cdot 0$	$130^{\circ}/0.2$	4·0 [₿]	$23 \cdot 8$	4.4
7.82	3·29 (3 mol.)	$8 \cdot 2$	6.9 a	$23 \cdot 8$	$130^{\circ}/0.2$	5.6 0	23.9	6.0
Ti(OEt) ₂ (OMe) ₂								
3.61	$2.52 \ (>4 \ mol.)$	6.0	3·1 ª	$25 \cdot 5$	$142^{\circ}/0.3$	2·4 ^b	25.55	$2 \cdot 6$
6.63	18·7 (†)		5·4 °	27.6	Subl. 190°	/1.5	$27 \cdot 6^{d}$	
* Ti (9/) c	ale for TilOEt	(OMe) 9	$9.4 \cdot \text{for}$	Ti(OFt)	(OMe). 23.95.	for T	'i(OFt)(OM	(e), 25.75.

* Ti (%) calc. for: Ti(OEt)₃(OMe), 22.4; for Ti(OEt)₂(OMe)₂ 23.95; for Ti(OEt)(OMe)₃, 25.75; for Ti(OMe)₄, 27.85.

Key for Tables 4-9.

2968

"White powder sol. in C ₆ H ₆ .	^{f} Colourless liquid miscible with C ₆ H ₆ .
^b Wax-like solid sol. in $C_{e}H_{e}$.	^g Thick colourless liquid sol. in C_6H_6 .
^e White solid insol. in C ₆ H ₆ .	^h Cooling occurs when reagents are mix
^d Found in sublimate.	ⁱ Heat evolved when reagents are mixe
· Departion minture become along on refluring	+ Inree excess

^e Reaction mixture became clear on refluxing. † Large excess.

ked. ed.

. .

TABLE 5. Reaction of methanol with tetraisopropyl titanate.

					Action of heat on product							
			Pro	duct	Product	Distillate			Subli	Sublimate		
Read	ctants (g.)		Yield	Ti	taken			Ti		Ti		
Ti(OPr ⁱ)4	MeÓH	C_6H_6 (g.)	(%)	(%) *	(g.)	B. p./mm.	g.	(%) *	g.	(%) *		
6.34	0.71 (1 mol.)		5.71	18.7	$5 \cdot 1$	$101^{\circ}/1.5$	4·3 ′	17.8	ہ 0.5	27.0		
5.5	1.22 (2 mol.)		4·6 °	20.3	3.8	$120^{\circ}/1.5$	2.71	18.3	ء 0.5	$27 \cdot 5$		
6.19	2.10 (3 mol.)	50	4·9 ¢	21.25	4.17	$126^{\circ}/2$	$2 \cdot 83$ f	18.8	0·9 ¢	28.0		
3.56	1.87 (>4 mol)	.) 10	2.89	$24 \cdot 3$	$2 \cdot 2$	$145^{\circ}/2.5$	1.11	18.9	0·8 °	27.8		
4.50	10·30 (†) °		2·2 °	27.55		Subl. 190	°/1·5	~~~		27.7		
* Ti	* Ti (%) calc. for: Ti(OMe)(OPr ⁱ) ₃ , 18.7; for Ti(OMe) ₂ (OPr ⁱ) ₂ , 21.0; for Ti(OMe) ₃ (OPr ⁱ), 23.95.											

TABLE 6. Reaction of methanol with tetra-t-butyl or dimethyl di-t-butyl titanate.

					Action of heat on product						
	Prod				D	istillat	e	Sublimate			
Rea	ctants (g.)	Yield	l Ti	Product taken			Ti		Ti		
$Ti(OBu^t)_4$	MeOH C ₆ H	$H_6(g.)$ (g.)	(%) *	(g.)	B.p./mm.	g.	(%) *	g.	(%) *		
6.25	0.59 (1 mol.)	- 5.65	16.0	4.9	$99^{\circ}/1.2$	4·1 ^f	15.0	0·3 ¢	26.7		
5.57	1.05 (2 mol.)	4.5^{f}	18.5	$4 \cdot 1$	84°/0·7	2.95^{f}	14.7	0∙7 ℃	27.2		
5.88		15 3 ·9 '	19.6	$2 \cdot 7$	$105^{\circ}/1.5$	1.5f	16.0	0·8 ¢	27.6		
1.63	0·70 (4 mol.)	$6.0 1.1^{g}$	$21 \cdot 0$								
${\rm Ti}({\rm OMe})_2({\rm OBu}^t)$	2										
2.75	15·0 (†) °	1·9 °	28.3		Subl. 19	$0^{\circ}/1.5$			27.5		
* Ti (%) Ti(OMe) ₄ , 27·8	calc. for: Ti(Ol 5.	Me)(OBu ^t) ₃ ,	16.1;	Ti(OMe);	$_{2}(OBu^{t})_{2}$,	18.7;	Ti(OMe) ₃	(OBu ^t)	, 22·4;		

TABLE 7. Reaction of t-butanol with tetraethyl or tetraisopropyl titanate $[Ti(OR)_4]$.

						•				•		
						Action of heat on product						
R	eactants (g.)		Pro	duct		Product			Foun	d in di	istillate	
	C ₆ H ₆	Yield	Ti	OR		taken	$\mathbf{Distill}$	ate	Ti	OR		
Ti(OEt)	4 Bu ^t OH (g.)	(g.)	(%)	(%)	OR : Ti	(g.)	B. p./mm.	g.	(%)	(%)	OR : Ti	
5.61	1·87 (1 mol.) 14	6.1'	19.3	60.15	3.3							
7.90	5.19 (2 mol.) 19	9.0i	18.5	51.9	$3 \cdot 0$	$5 \cdot 9$		$3 \cdot 6$	17.3	38.6	$2 \cdot 4$	
~ ~					~ (9—10					
5.24	6.80 (4 mol.) 19.5	6.47	17.1	38.2	$2 \cdot 4$				_		_	
Ti(OPr ⁱ)	4											
7.30	1·98 (1 mol.) 15	7.6f	16.2	$63 \cdot 4$	$3 \cdot 1$	$4 \cdot 3$	$103.5^{\circ}/8.5$	4·01	16.2	62.5	$3 \cdot 1$	
7.52	3·93 (2 mol.) 11	8 ∙0	15.7		$2 \cdot 6$							
4.60	4·80 (4 mol.) 18	5.9	14.9	$32 \cdot 6$	1.7							

TABLE 8. Reaction of alcohols (R•OH) with tetra-t-butyl titanate.

			-		•			-			
							Action of heat on product				
eactants (g.)			\mathbf{Pro}	duct		Product			Found in distillate		
	C.H.	Yield	Ti OR			taken	te	Ti	OR		
)₄ Pr ⁱ OH	(g.)	(%)	(%)	(%)	OR : Ti	(g.)	B. p./mm.	g.	(%)	(%)	OR : Ti
		5.3 f	14.8	18.8	$1 \cdot 0$	$2 \cdot 0$	$103^{\circ}/3.5$	1.8^{f}	14.6	16.1	0.9
1.87 (2 mol.)	10	$5 \cdot 1$	14.9	26.1	1.4				<u> </u>		
4·18 (4 mol.)	19	5·7 f	$15 \cdot 2$	$34 \cdot 4$	$1 \cdot 8$		_				
7·30 (†)		2.25	16.3	61.0	$3 \cdot 0$						
EtOH											
3.53 (4 mol.)	20	5.2'	17.6	40.2	$2 \cdot 4$						
8·56 (̀†) ´		$2 \cdot 9$	19.9	6 3 ·6	$3 \cdot 4$	$2 \cdot 1$	$120^{\circ}/0.8$	1·8 f	19.9	65.7	3.5
	 4 Pr⁴OH 1.05 (1 mol.) 1.87 (2 mol.) 4.18 (4 mol.) 7.30 (†) EtOH 3.53 (4 mol.) 	$\begin{array}{c} & & & & & \\ & & & & & \\ \mathbf{A} & & & & \mathbf{P}^{tOH} & (g.) \\ \hline 1 \cdot 05 & (1 \ \mathrm{mol.}) & 10^{\ h} \\ \hline 1 \cdot 87 & (2 \ \mathrm{mol.}) & 10 \\ 4 \cdot 18 & (4 \ \mathrm{mol.}) & 19 \\ \hline 7 \cdot 30 & (\dagger) & & - \\ & & & \\ & $	$\begin{array}{c} C_{8}H_{6} \text{ Yield} \\ C_{8}H_{6} \text{ Yield} \\ (g.) (\%) \\ 1.05 (1 \text{ mol.}) 10 \ ^{h} 5.3^{f} \\ 1.87 (2 \text{ mol.}) 10 \ 5.1 \\ 4.18 (4 \text{ mol.}) 19 \ 5.7^{f} \\ 7.30 (\dagger) \ 2.2^{f} \\ \text{EtOH} \\ 3.53 (4 \text{ mol.}) 20 \ 5.2^{f} \end{array}$	$\begin{array}{c} C_{6}H_{6} \mbox{ Yield } \mbox{Ti} \\ C_{6}H_{6} \mbox{ Yield } \mbox{Ti} \\ Pr^{i}OH \mbox{ (g.) } (\%) \mbox{ (\%)} \\ 1\cdot05 \mbox{ (1 mol.) } 10^{\mbox{ h}} 5\cdot3^{\mbox{ J}} \mbox{ 14\cdot8} \\ 1\cdot87 \mbox{ (2 mol.) } 10 \mbox{ 5\cdot1 } \mbox{ 14\cdot9} \\ 4\cdot18 \mbox{ (4 mol.) } 19 \mbox{ 5\cdot7 } \mbox{ 15\cdot2} \\ 7\cdot30 \mbox{ (\dagger) } \mbox{ - } 2\cdot2^{\mbox{ J}} \mbox{ 16\cdot3} \\ \mbox{ EtOH} \\ 3\cdot53 \mbox{ (4 mol.) } 20 \mbox{ 5\cdot2}^{\mbox{ J}} \mbox{ 17\cdot6} \end{array}$	$\begin{array}{c} & C_{6}H_{6} \text{ Yield } \text{ Ti } \text{ OR} \\ \mathbf{f}_{4} \text{ Pr}^{1}\text{OH} & (g.) & (\%) & (\%) & (\%) \\ 1\cdot05 & (1 \text{ mol.}) & 10^{h} 5\cdot3^{f} & 14\cdot8 & 18\cdot8 \\ 1\cdot87 & (2 \text{ mol.}) & 10 & 5\cdot1 & 14\cdot9 & 26\cdot1 \\ 4\cdot18 & (4 \text{ mol.}) & 19 & 5\cdot7^{f} & 15\cdot2 & 34\cdot4 \\ 7\cdot30 & (\dagger) & - 2\cdot2^{f} & 16\cdot3 & 61\cdot0 \\ \text{EtOH} \\ 3\cdot53 & (4 \text{ mol.}) & 20 & 5\cdot2^{f} & 17\cdot6 & 40\cdot2 \end{array}$	$\begin{array}{c} C_{6}H_{6} \text{ Yield } & \text{Ti} & \text{OR} \\ C_{6}H_{6} \text{ (g.)} & (\%) & (\%) & (\%) \text{ OR}: \text{Ti} \\ 1\cdot05 & (1 \text{ mol.}) & 10^{-5} 5\cdot3^{-5} 14\cdot8 & 18\cdot8 & 1\cdot0 \\ 1\cdot87 & (2 \text{ mol.}) & 10 & 5\cdot1 & 14\cdot9 & 26\cdot1 & 1\cdot4 \\ 4\cdot18 & (4 \text{ mol.}) & 19 & 5\cdot7^{-7} & 15\cdot2 & 34\cdot4 & 1\cdot8 \\ 7\cdot30 & (\dagger) & & 2\cdot2^{-5} & 16\cdot3 & 61\cdot0 & 3\cdot0 \\ & \text{EtOH} \\ 3\cdot53 & (4 \text{ mol.}) & 20 & 5\cdot2^{-5} & 17\cdot6 & 40\cdot2 & 2\cdot4 \end{array}$	$\begin{array}{c} C_{6}H_{6} \text{ Yield } Ti & OR & taken \\ C_{6}H_{6} \text{ Yield } Ti & OR & taken \\ Pr^{i}OH & (g.) & (\%) & (\%) & OR: Ti & (g.) \\ \hline 1\cdot05 & (1 \text{ mol.}) & 10^{-h} & 5\cdot3^{-f} & 14\cdot8 & 18\cdot8 & 1\cdot0 & 2\cdot0 \\ \hline 1\cdot87 & (2 \text{ mol.}) & 10 & 5\cdot1 & 14\cdot9 & 26\cdot1 & 1\cdot4 & \\ 4\cdot18 & (4 \text{ mol.}) & 19 & 5\cdot7^{-f} & 15\cdot2 & 34\cdot4 & 1\cdot8 & \\ 7\cdot30 & (\dagger) & & 2\cdot2^{-f} & 16\cdot3 & 61\cdot0 & 3\cdot0 & \\ \hline \text{EtOH} \\ 3\cdot53 & (4 \text{ mol.}) & 20 & 5\cdot2^{-f} & 17\cdot6 & 40\cdot2 & 2\cdot4 & \end{array}$	$\begin{array}{c cccc} \text{He actants (g.)} & \text{Product} & \text{Product} & \text{Distilla} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Leactants (g.) Product Product Product Found C_6H_6 Yield Ti OR taken Distillate Ti A_4 Pr ¹ OH (g.) (%) (%) OR: Ti (g.) B. p./mm. g. (%) $1 \cdot 05$ (1 mol.) $10^{-5} \cdot 5^{-3f}$ $14 \cdot 8$ $18 \cdot 8$ $1 \cdot 0$ $2 \cdot 0$ $103^{\circ}/3 \cdot 5$ $1 \cdot 8^{-f}$ $1 \cdot 8^{-f}$ $1 \cdot 4 \cdot 6$ $1 \cdot 87$ (2 mol.) $10^{-5} \cdot 1$ $14 \cdot 9^{-2}$ $26 \cdot 1$ $1 \cdot 4$ $ 4 \cdot 18$ (4 mol.) $19^{-5} \cdot 5^{-f}$ $15 \cdot 2$ $34 \cdot 4$ $1 \cdot 8$ $ T \cdot 30$ (†) $ 2 \cdot 2^{-f}$ $16 \cdot 3$ $61 \cdot 0$ $3 \cdot 0$ $ -$ EtOH $3 \cdot 53$ (4 mol.) $20^{-5} \cdot 2^{-f}$ $17 \cdot 6^{-4}$ $40 \cdot 2^{-2}$ $2 \cdot 4$ $ -$ <td>Leactants (g.) Product Product Found in definition C_6H_6 Yield Ti OR taken Distillate Ti OR A_4 Pr¹OH (g.) (%) (%) OR : Ti (g.) B. p./mm. g. (%) (%) (%) $1 \cdot 05$ (1 mol.) $10^{-5} \cdot 5 \cdot 3^{-7}$ $14 \cdot 8$ $18 \cdot 8$ $1 \cdot 0$ $2 \cdot 0$ $103^{\circ}/3 \cdot 5$ $1 \cdot 8^{-7}$ $14 \cdot 6$ $16 \cdot 1$ $1 \cdot 87$ (2 mol.) $10^{-5} \cdot 1$ $14 \cdot 9$ $26 \cdot 1$ $1 \cdot 4$ — — — — — $4 \cdot 18$ (4 mol.) $19^{-5} \cdot 7^{-7}$ $15 \cdot 2$ $34 \cdot 4$ $1 \cdot 8$ — = … … …</td>	Leactants (g.) Product Product Found in definition C_6H_6 Yield Ti OR taken Distillate Ti OR A_4 Pr ¹ OH (g.) (%) (%) OR : Ti (g.) B. p./mm. g. (%) (%) (%) $1 \cdot 05$ (1 mol.) $10^{-5} \cdot 5 \cdot 3^{-7}$ $14 \cdot 8$ $18 \cdot 8$ $1 \cdot 0$ $2 \cdot 0$ $103^{\circ}/3 \cdot 5$ $1 \cdot 8^{-7}$ $14 \cdot 6$ $16 \cdot 1$ $1 \cdot 87$ (2 mol.) $10^{-5} \cdot 1$ $14 \cdot 9$ $26 \cdot 1$ $1 \cdot 4$ — — — — — $4 \cdot 18$ (4 mol.) $19^{-5} \cdot 7^{-7}$ $15 \cdot 2$ $34 \cdot 4$ $1 \cdot 8$ — = … … …

					Action of heat on product						
Reactants (g.)			Prod	uct	Product	Distillate					
$Ti(OMe)_4$	EtOH	C_6H_6 (g.)	Yield (g.)	Ti (%)	taken (g.)	B. p./mm.	g.	Ti (%)			
1.33	1.43 (4 mol.)	25	1·55 ª	$24 \cdot 9$							
1.70	6·70 (†)		1·0 a	$23 \cdot 85$	0.8	$130^{\circ}/0.2$	0·6 b	$23 \cdot 9$			
	Pr ⁱ OH										
1.32	1.92 (4 mol.)	25	1.7 9	$22 \cdot 2$	_						
1.65	16·5 (̀†) ´́		2.0f	18.2	1.5	$61^{\circ}/0.3$	1·1 [/]	17.2			
Ti (%) calc. for: Ti(OMe) ₂ (OEt) ₂ , 23.95; for Ti(OPr ⁱ) ₄ , 16.85.											

We thank Messrs. Peter Spence Ltd. for a gift of titanium alkoxides. One of us (I. D. V.) is indebted to the Scientific Research Committee, Uttar Pradesh, Allahabad, for the award of a scholarship during the tenure of which this work was carried out.

Universities of Lucknow and Gorakhpur.

[Received, January 11th, 1960.]